Information Fusion
Text-DiFuse: An Interactive Multi-Modal Image Fusion Framework based on Text-modulated Diffusion Model
Existing multi-modal image fusion methods fail to address the compound degradations presented in source images, resulting in fusion images plagued by noise, color bias, improper exposure, etc. Additionally, these methods often overlook the specificity of foreground objects, weakening the salience of the objects of interest within the fused images. To address these challenges, this study proposes a novel interactive multi-modal image fusion framework based on the text-modulated diffusion model, called Text-DiFuse.
GAR: Generalized Autoregression for Multi-Fidelity Fusion Yuxin Wang
In many scientific research and engineering applications where repeated simulations of complex systems are conducted, a surrogate is commonly adopted to quickly estimate the whole system. To reduce the expensive cost of generating training examples, it has become a promising approach to combine the results of low-fidelity (fast but inaccurate) and high-fidelity (slow but accurate) simulations. Despite the fast developments of multi-fidelity fusion techniques, most existing methods require particular data structures and do not scale well to high-dimensional output. To resolve these issues, we generalize the classic autoregression (AR), which is wildly used due to its simplicity, robustness, accuracy, and tractability, and propose generalized autoregression (GAR) using tensor formulation and latent features. GAR can deal with arbitrary dimensional outputs and arbitrary multifidelity data structure to satisfy the demand of multi-fidelity fusion for complex problems; it admits a fully tractable likelihood and posterior requiring no approximate inference and scales well to high-dimensional problems.
Multiview Human Body Reconstruction from Uncalibrated Cameras
We present a new method to reconstruct 3D human body pose and shape by fusing visual features from multiview images captured by uncalibrated cameras. Existing multiview approaches often use spatial camera calibration (intrinsic and extrinsic parameters) to geometrically align and fuse visual features. Despite remarkable performances, the requirement of camera calibration restricted their applicability to real-world scenarios, e.g., reconstruction from social videos with wide-baseline cameras. We address this challenge by leveraging the commonly observed human body as a semantic calibration target, which eliminates the requirement of camera calibration. Specifically, we map per-pixel image features to a canonical body surface coordinate system agnostic to views and poses using dense keypoints (correspondences). This feature mapping allows us to semantically, instead of geometrically, align and fuse visual features from multiview images. We learn a self-attention mechanism to reason about the confidence of visual features across and within views. With fused visual features, a regressor is learned to predict the parameters of a body model. We demonstrate that our calibration-free multiview fusion method reliably reconstructs 3D body pose and shape, outperforming stateof-the-art single view methods with post-hoc multiview fusion, particularly in the presence of non-trivial occlusion, and showing comparable accuracy to multiview methods that require calibration.
INSPECT: A Multimodal Dataset for Pulmonary Embolism Diagnosis and Prognosis
Synthesizing information from multiple data sources plays a crucial role in the practice of modern medicine. Current applications of artificial intelligence in medicine often focus on single-modality data due to a lack of publicly available, multimodal medical datasets. To address this limitation, we introduce INSPECT, which contains de-identified longitudinal records from a large cohort of patients at risk for pulmonary embolism (PE), along with ground truth labels for multiple outcomes. INSPECT contains data from 19,402 patients, including CT images, radiology report impression sections, and structured electronic health record (EHR) data (i.e.
AYES IMP: Uncertainty Quantification for Causal Data Fusion Javier Gonzรกlez University of Oxford University of Oxford Microsoft Research Cambridge Yee Whye Teh Dino Sejdinovic University of Oxford
While causal models are becoming one of the mainstays of machine learning, the problem of uncertainty quantification in causal inference remains challenging. In this paper, we study the causal data fusion problem, where datasets pertaining to multiple causal graphs are combined to estimate the average treatment effect of a target variable. As data arises from multiple sources and can vary in quality and quantity, principled uncertainty quantification becomes essential. To that end, we introduce Bayesian Interventional Mean Processes, a framework which combines ideas from probabilistic integration and kernel mean embeddings to represent interventional distributions in the reproducing kernel Hilbert space, while taking into account the uncertainty within each causal graph. To demonstrate the utility of our uncertainty estimation, we apply our method to the Causal Bayesian Optimisation task and show improvements over state-of-the-art methods.
FAST: a Fused and Accurate Shrinkage Tree for Heterogeneous Treatment Effects Estimation
This paper proposes a novel strategy for estimating the heterogeneous treatment effect called the Fused and Accurate Shrinkage Tree (FAST). Our approach utilizes both trial and observational data to improve the accuracy and robustness of the estimator. Inspired by the concept of shrinkage estimation in statistics, we develop an optimal weighting scheme and a corresponding estimator that balances the unbiased estimator based on the trial data with the potentially biased estimator based on the observational data. Specifically, combined with tree-based techniques, we introduce a new split criterion that utilizes both trial data and observational data to more accurately estimate the treatment effect. Furthermore, we confirm the consistency of our proposed tree-based estimator and demonstrate the effectiveness of our criterion in reducing prediction error through theoretical analysis. The advantageous finite sample performance of the FAST and its ensemble version over existing methods is demonstrated via simulations and real data analysis.
Multiview Human Body Reconstruction from Uncalibrated Cameras
We present a new method to reconstruct 3D human body pose and shape by fusing visual features from multiview images captured by uncalibrated cameras. Existing multiview approaches often use spatial camera calibration (intrinsic and extrinsic parameters) to geometrically align and fuse visual features. Despite remarkable performances, the requirement of camera calibration restricted their applicability to real-world scenarios, e.g., reconstruction from social videos with wide-baseline cameras. We address this challenge by leveraging the commonly observed human body as a semantic calibration target, which eliminates the requirement of camera calibration. Specifically, we map per-pixel image features to a canonical body surface coordinate system agnostic to views and poses using dense keypoints (correspondences). This feature mapping allows us to semantically, instead of geometrically, align and fuse visual features from multiview images. We learn a self-attention mechanism to reason about the confidence of visual features across and within views. With fused visual features, a regressor is learned to predict the parameters of a body model. We demonstrate that our calibration-free multiview fusion method reliably reconstructs 3D body pose and shape, outperforming stateof-the-art single view methods with post-hoc multiview fusion, particularly in the presence of non-trivial occlusion, and showing comparable accuracy to multiview methods that require calibration.
ContinuAR: Continuous Autoregression For Infinite-Fidelity Fusion Wei W. Xing
Multi-fidelity fusion has become an important surrogate technique, which provides insights into expensive computer simulations and effectively improves decision-making, e.g., optimization, with less computational cost. Multi-fidelity fusion is much more computationally efficient compared to traditional single-fidelity surrogates. Despite the fast advancement of multi-fidelity fusion techniques, they lack a systematic framework to make use of the fidelity indicator, deal with high-dimensional and arbitrary data structure, and scale well to infinite-fidelity problems. In this work, we first generalize the popular autoregression (AR) to derive a novel linear fidelity differential equation (FiDE), paving the way to tractable infinite-fidelity fusion. We generalize FiDE to a high-dimensional system, which also provides a unifying framework to seemly bridge the gap between many multi-and single-fidelity GP-based models. We then propose ContinuAR, a rank-1 approximation solution to FiDEs, which is tractable to train, compatible with arbitrary multi-fidelity data structure, linearly scalable to the output dimension, and most importantly, delivers consistent SOT A performance with a significant margin over the baseline methods. Compared to the SOT A infinite-fidelity fusion, IFC, ContinuAR achieves up to 4x improvement in accuracy and 62,500x speedup in training time.